Plan 9 Mkfiles

Bob Flandrena
bobf@plan9.bell-labs.com

Introduction

Every Plan 9 source directory contains a file, called mkfile, specifying the rules for
building the executable or library that is the product of the directory. Mk(1) interprets
the rules in the file, calculates the dependencies, and executes an rc(1) script to con-
struct the product. If necessary components are supplied by neighboring directories or
sub-directories, the mkfiles in those directories are first executed to build the compo-
nents before the local construction proceeds.

Most application source directories produce one of four types of product: a single exe-
cutable, several executables, a local library, or a system library. Four generic mkfiles
define the normal rules for building each type of product. The simplest mkfiles need
only list the components and include the appropriate generic mkfile to do the work.
More complex mkfiles may supply additional rules to augment, modify, or override the
generic rules.

Using a Mkfile

To build a product, change to the directory containing its source and invoke mk with the
appropriate target as an argument. All mkfiles provide the following standard targets:

all Build a local version of the product or products for the current
architecture. If the product is a single program, the result is
stored in file $O.out. If the directory produces multiple exe-
cutables, they are stored in the files named $0. progname, where
progname is the name of each executable. A product may be
built for a different architecture by prefacing the mk command
with objtype=architecture, where architecture is the name of
the target architecture. Directories producing system libraries
always operate directly on the installed version of the library; in
this case the target all is equivalent to the target install.

install Build and install the product or products for the current architec-
ture.

installall Build and install the product or products for all architectures.

clean Rid the directory and its subdirectories of the by-products of the

build process. Intermediate files that are easily reproduced (e.g.,
object files, yacc intermediates, target executables) are always
removed. Complicated intermediates, such as local libraries, are
usually preserved.

nuke Remove all intermediates from the directory and any subdirecto-
ries. This target guarantees that a subsequent build for the archi-
tecture is performed from scratch.

If no target is specified on the mk command line, the all target is built by default. In a
directory producing multiple executables, there is no default target.

-2

In addition to the five standard targets, additional targets may be supplied by each gen-
eric mkfile or by the directory’s mkfile.

The environment variable NPROC is set by the system to the number of available pro-
cessors. Setting this variable, either in the environment or in a mkfile, controls the
amount of parallelism in the build. For example, the command

NPROC=1 mk

restricts a build to a single thread of execution.

Creating a Mkfile

The easiest way to build a new mkfile is to copy and modify an existing mkfile of the
same type. Failing that, it is usually possible to create a new mkfile with minimal effort,
since the appropriate generic mkfile predefines the rules that do all the work. In the
simplest and most common cases, the new mkfile need only define a couple of variables
and include the appropriate architecture-specific and generic mkfiles.

There are four generic mkfiles containing commonly used rules for building a product:
mkone, mkmany, mklib, and mksyslib. These rules perform such actions as com-
piling C source files, loading object files, archiving libraries, and installing executables
in the bin directory of the appropriate architecture. The generic mkfiles are stored in
directory /sys/src/cmd. Mkfile mkone builds a single executable, mkmany builds
several executables from the source in a single directory, and mklib and mksyslib,
maintain local and system libraries, respectively. The rules in the generic mkfiles are
driven by the values of variables, some of which must be set by the product mkfile and
some of which are supplied by the generic mkfile. Variables in the latter class include:

Variable Default Meaning
CFLAGS —-FVvw C compiler flags

LDFLAGS Loader flags
YFLAGS —d Yacc flags
AFLAGS Assembler flags

The following variables are set by the product mkfile and used by the generic mkfile.
Any may be empty depending on the specific product being made.

TARG Name(s) of the executable(s) to be built
LIB Library name(s)

OFILES Object files

HFILES Header files included by all source files
YFILES Yacc input files

BIN Directory where executables are installed

Mkfile Organization
All mkfiles share the following common structure:

</$objtype/mkfile # architecture-dependent definitions
variable definitions # TARG, OFILES, HFILES, etc.
</sys/src/cmd/generic # mkone, mkmany, mklib, or mksyslib
variable overrides # CFLAGS, objtype, etc.

extra rules # overrides, augmented rules, additional targets

-3-

Note that the architecture-dependent mkfiles include file /sys/src/mkfile.proto
for system-wide variables that are common to all architectures.

The variables driving the expansion of the generic mkfile may be specified in any order
as long as they are defined before the inclusion of the generic mkfile. The value of a
variable may be changed by assigning a new value following the inclusion of the generic
mkfile, but the effects are sometimes counter-intuitive. Such variable assignments do
not apply to the target and prerequisite portions of any previously defined rules; the
new values only apply to the recipes of rules preceding the assignment statement and to
all parts of any rules following it.

The rules supplied by the generic mkfile may be overridden or augmented. The new
rules must be specified after the inclusion of the generic mkfile. If the target and pre-
requisite portion of the rule exactly match the target and prerequisite portion of a previ-
ously defined rule and the new rule contains a recipe, the new rule replaces the old one.
If the target of a new rule exactly matches the target of a previous rule and one or more
new prerequisites are specified and the new rule contains no recipe, the new prerequi-
sites are added to the prerequisites of the old rule.

Following sections discuss each generic mkfile in detail.

Mkone

The mkone generic mkfile contains rules for building a single executable from one or
more files in a directory. The variable TARG specifies the name of the executable and
variables OFILES and YFILES specify the object files and yacc source files used to
build it. HFILES contains the names of the local header files included in all source
files. BIN is the name of the directory where the executable is installed. LIB contains
the names of local libraries used by the linker. This variable is rarely needed as libraries
referenced by a #pragma directive in an associated header file, including all system
libraries, are automatically searched by the loader.

If mk is executed without a target, the all target is built; it produces an executable in
$0.out. Variable HFILES identifies the header files that are included in all or most or
the C source files. Occasionally, a program has other header files that are only used in
some source files. A header can be added to the prerequisites for those object files by
adding a rule of the following form following the inclusion of generic mkfile mkone:

file. $0: header.h

The mkfile for a directory producing a single executable using the normal set of rules is
trivial: a list of some files followed by the inclusion of mkone. For example,
/sys/src/cmd/diff/mkfile contains:

< /$objtype/mkfile

TARG=diff

OFILES=\
diffdir. $0\
diffio. $0O\
diffreg. $0O\
main. $0\

HFILES=diff.h
BIN=/$objtype/bin
</sys/src/cmd/mkone

The more complex mkfile in /sys/src/cmd/awk overrides compiler and loader vari-
ables to select the ANSI/POSIX Computing Environment with appropriately defined com-
mand line variables. It also overrides the default yacc rule to place the output soure in

-4 -

file awkgram.c and the clean and nuke rules, so it can remove the non-standard
intermediate files. Finally, the last three rules build a version of maketab appropriate
for the architecture where the mk is being run and then executes it to create source file
proctab.c:

</$objtype/mkfile

TARG=awk

OFILES=re. $0\
lex. $0\
main. $0\
parse. $0\
proctab. $0\
tran. $0O\
1lib. $0\
run. $0\
awkgram. $0\

HFILES=awk.h\
y.tab.h\
proto.h\

YFILES=awkgram.y

BIN=/$objtype/bin

</sys/src/cmd/mkone

CFLAGS=-c -D_REGEXP_EXTENSION —-D_RESEARCH_SOURCE \
—D_BSD_EXTENSION -DUTF

YFLAGS=-S -d -v

CC=pcc

LD=pcc

cpuobjtype=‘{sed —n ’'s/AO=//p’ /$cputype/mkfile}

y.tab.h awkgram.c: $YFILES
$YACC —-o awkgram.c $YFLAGS $prereq

clean:V:
rm —f *.[$0S] [$0S].out [$0S].maketab y.tab.? y.debug\
y.output $TARG

nuke:V:
rm —f *.[$0S] [$0S].out [$0S].maketab y.tab.? y.debug\
y.output awkgram.c $TARG
proctab.c: $cpuobjtype.maketab
./$cpuobjtype.maketab >proctab.c
$cpuobjtype.maketab: y.tab.h maketab.c
objtype=$cputype
mk maketab.$cputype
maketab. $cputype:V: y.tab.h maketab. $0
$ILD —o $0.maketab maketab.$0
Mkmany

The mkmany generic mkfile builds several executables from the files in a directory. It
differs from the operation of mkone in three respects: TARG specifies the names of all
executables, there is no default command-line target, and additional rules allow a single

executable to be built or installed.

The TARG variable specifies the names of all executables produced by the mkfile. The
rules assume the name of each executable is also the name of the file containing its
main function. OFILES specifies files containing common subroutines loaded with all
executables. Consider the mkfile:

</$objtype/mkfile

TARG=alpha beta
OFILES=common. $0
BIN=/$objtype/bin
</sys/src/cmd/mkmany

It assumes the main functions for executables alpha and beta are in files alpha. $0
and beta. $0 and that both programs use the subroutines in file common. $0. The
all target builds all executables, leaving each in a file with a name of the form
$0. progname where progname is the name of the executable. In this example the all
target produces executables $0.alpha and $0.beta.

The mkmany rules provide additional targets for building a single executable:

$0.progname Builds executable $0.progname in the current direc-
tory. When the target architecture is not the current
architecture the mk command must be prefixed with
the customary objtype=architecture assignment to
select the proper compilers and loaders.

progname.install Installs executable progname for the target architec-
ture.

progname.installall |Installs executable progname for all architectures.

Mklib

The mk1ib generic mkfile builds a local library. Since this form of mkfile constructs no
executable, the TARG and BIN variables are not needed. Instead, the LIB variable
specifies the library to be built or updated. Variable OFILES contains the names of the
object files to be archived in the library. The use of variables YFILES and HFILES
does not change. When possible, only the out-of-date members of the library are
updated.

The variable LIBDIR contains the name of the directory where the library is installed;
by default it selects the current directory. It can be overridden by assigning the new
directory name after the point where mk1ib is included.

The clean target removes object files and yacc intermediate files but does not touch
the library. The nuke target removes the library as well as the files removed by the
clean target. The command

mk —-s clean all

causes the existing library to be updated, or created if it doesn’t already exist. The
command

mk —-s nuke all

forces the library to be rebuilt from scratch.

The mkfile from /sys/src/cmd/upas/1ibString contains the following specifi-
cations to build the local library 1ibString.a$0 for the object architecture refer-
enced by $0:

</$objtype/mkfile

LIB=1ibString.a$0

OFILES= s_alloc.$0\
s_append. $0\
s_array. $0\
s_copy. $0\
s_getline. $0\
s_grow. $0\
s_nappend. $0\
s_parse. $0O\
s_read. $0\
s_read_line. $0\
s_tolower. $0\

</sys/src/cmd/mklib

nuke:V:
mk clean
rm —f 1ibString.a[$0S]

The override of the rule for target nuke removes the libraries for all architectures as
opposed to the default recipe for this target which removes the library for the current
architecture.

Mksyslib

The mksyslib generic mkfile is similar to the mk1ib mkfile except that it operates on
a system library instead of a local library. The install and all targets are the same;
since there is no local copy of the library, all updates are performed on the installed
library. The rule for the nuke target is identical to that of the clean target; unlike the
nuke target for local libraries, the library is never removed.

No attempt is made to determine if individual library members are up-to-date; all mem-
bers of a library are always updated. Special targets support manipulation of a single
object file; the target objfile updates file objfile. $0 in the library of the current
architecture and the target objfile.all updates objfile. $0 in the libraries of all
architectures.

Overrides

The rules provided by a generic mkfile or the variables used to control the evaluation of
those rules may be overridden in most circumstances. Overrides must be specified in
the product mkfile after the point where the generic mkfile is included; in general, vari-
able and rule overrides occupy the end of a product mkfile.

The value of a variable is overridden by assigning a new value to the variable. Most vari-
able overrides modify the values of flags or the names of commands executed in
recipes. For example, the default value of CFLAGS is often overridden or augmented
and the ANSI/POSIX Computing Environment is selected by setting the CC and LD vari-
ables to pcc.

Modifying rules is trickier than modifying variables. Additional constraints can be added
to a rule by specifying the target and the new prerequisite. For example,

%.$0: header.h

adds file header.h the set of prerequisites for all object files. There is no mechanism
for adding additional commands to an existing recipe; if a recipe is unsatisfactory, the
rule and its recipe must be completely overridden. A rule is overridden only when the
replacement rule matches the target and prerequisite portions of the original rule

-7 -

exactly. The recipe associated with the new rule then replaces the recipe of the original
rule. For example, /sys/src/cmd/lex/mkfile overrides the default
installall rule to perform the normal loop on all architectures and then copy a pro-
totype file to the system library directory.

</$objtype/mkfile

TARG=1lex

OFILES=1main. $0\
y.tab. $0\
subl. $0\
sub?2. $0\
header. $0\

HFILES=1defs.h\
YFILES=parser.y\

BIN=/$objtype/bin
</sys/src/cmd/mkone

installall:V:
for(objtype in $CPUS)
mk install
cp ncform /sys/lib/lex

Another way to perform the same override is to add a dependency to the default
installall rule that executes an additional rule to install the prototype file:

installall:V: ncform.install

ncform.install:V:
cp ncform /sys/lib/lex

Special Tricks
Two special cases require extra deviousness.

In the first, a file needed to build an executable is generated by a program that, in turn,
is built from a source file that is not part of the product. In this case, the executable
must be built for the target architecture, but the intermediate executable must be built
for the architecture mk is executing on. The intermediate executable is built by recur-
sively invoking mk with the appropriate target and the executing architecture as the tar-
get architecture. When that mk completes, the intermediate is executed to generate the
source file to complete the build for the target architecture. The earlier example of
/sys/src/cmd/awk/mkfile illustrates this technique.

Another awkward situation occurs when a directory contains source to build an exe-
cutable as well as source for auxiliary executables that are not to be installed. In this
case the mkmany generic rules are inappropriate, because all executables would be
built and installed. Instead, use the mkone generic file to build the primary executable
and provide extra targets to build the auxiliary files. This approach is also useful when
the auxiliary files are not executables; /sys/src/cmd/spell/mkfile augments
the default rules to build and install the spell executable with elaborate rules to gen-
erate and maintain the auxiliary spelling lists.

