Rc — The Plan 9 Shell

Tom Duff
td@plan9.bell-labs.com

ABSTRACT

Rc is a command interpreter for Plan 9 that provides similar facilities
to UNIX’s Bourne shell, with some small additions and less idiosyncratic
syntax. This paper uses numerous examples to describe rc’s features,
and contrasts rc with the Bourne shell, a model that many readers will be
familiar with.

1. Introduction

Rc is similar in spirit but different in detail from UNIX’s Bourne shell. This paper
describes rc’s principal features with many small examples and a few larger ones. It
assumes familiarity with the Bourne shell.

2. Simple commands

For the simplest uses rc has syntax familiar to Bourne-shell users. All of the fol-
lowing behave as expected:

date

cat /lib/news/build

who >user.names

who >>user.names

we <file

echo [a-f]*.c

who | wc

who; date

ve *.c &

mk && v.out /*/bin/fb/*
rm —-r junk || echo rm failed!

3. Quotation

An argument that contains a space or one of rc’s other syntax characters must
be enclosed in apostrophes (’):

rm 'odd file name’
An apostrophe in a quoted argument must be doubled:

echo 'How’’s your father?’

4. Patterns

An unquoted argument that contains any of the characters * ? [is a pattern to
be matched against file names. A * character matches any sequence of characters,
? matches any single character, and [class] matches any character in the class,
unless the first character of class is ~, in which case the class is complemented.

-2

The class may also contain pairs of characters separated by —, standing for all char-
acters lexically between the two. The character / must appear explicitly in a pat-
tern, as must the path name components . and ... A pattern is replaced by a list
of arguments, one for each path name matched, except that a pattern matching no
names is not replaced by the empty list; rather it stands for itself.

5. Variables

UNIX’s Bourne shell offers string-valued variables. Rc provides variables
whose values are lists of arguments — that is, arrays of strings. This is the principal
difference between rc and traditional UNIX command interpreters. Variables may be
given values by typing, for example:

path=(. /bin)
user=td
font=/1ib/font/bit/pelm/ascii.9.font

The parentheses indicate that the value assigned to path is a list of two strings.
The variables user and font are assigned lists containing a single string.

The value of a variable can be substituted into a command by preceding its
name with a $, like this:

echo $path
If path had been set as above, this would be equivalent to
echo . /bin
Variables may be subscripted by numbers or lists of numbers, like this:

echo $path(2)
echo $path(2 1 2)

These are equivalent to

echo /bin
echo /bin . /bin

There can be no space separating the variable’s name from the left parenthesis; oth-
erwise, the subscript would be considered a separate parenthesized list.

The number of strings in a variable can be determined by the $# operator. For
example,

echo $#path
would print 2 for this example.
The following two assignments are subtly different:

empty=()
null=""

The first sets empty to a list containing no strings. The second sets null to a list
containing a single string, but the string contains no characters.

Although these may seem like more or less the same thing (in Bourne’s shell,
they are indistinguishable), they behave differently in almost all circumstances.
Among other things

echo $#empty
prints 0, whereas

echo $#null
prints 1.

-3-

All variables that have never been set have the value ().

Occasionally, it is convenient to treat a variable’s value as a single string. The
elements of a string are concatenated into a single string, with spaces between the
elements, by the $" operator. Thus, if we set

list=(How now brown cow)
string=$"1list

then both
echo $list
and
echo $string
cause the same output, viz:
How now brown cow
but
echo $#list $#string
will output
4 1

because $1ist has four members, but $string has a single member, with three
spaces separating its words.

6. Arguments

When rc is reading its input from a file, the file has access to the arguments
supplied on rc’s command line. The variable $* initially has the list of arguments
assigned to it. The names $1, $2, etc. are synonyms for $* (1), $*(2), etc. In
addition, $0 is the name of the file from which rc’s input is being read.

7. Concatenation

Rc has a string concatenation operator, the caret A, to build arguments out of
pieces.

echo hullyAgully
is exactly equivalent to
echo hullygully
Suppose variable i contains the name of a command. Then

ve $iA.c
vl —o $1 $iA.v

might compile the command’s source code, leaving the result in the appropriate file.
Concatenation distributes over lists. The following

echo (a b c)A(C1 2 3)
src=(main subr io)
cc $srcA.c

are equivalent to

echo al b2 c3
cc main.c subr.c io.c

In detail, the rule is: if both operands of A are lists of the same non-zero number of
strings, they are concatenated pairwise. Otherwise, if one of the operands is a

-4 -

single string, it is concatenated with each member of the other operand in turn.
Any other combination of operands is an error.

8. Free carets

User demand has dictated that rc insert carets in certain places, to make the
syntax look more like the Bourne shell. For example, this:

cc —$flags $stems.c
is equivalent to
cc -A$flags $stemsA.c

In general, rc will insert A between two arguments that are not separated by white
space. Specifically, whenever one of $’ * follows a quoted or unquoted word, or an
unquoted word follows a quoted word with no intervening blanks or tabs, an implicit
A is inserted between the two. If an unquoted word immediately following a $ con-
tains a character other than an alphanumeric, underscore or *, a A is inserted
before the first such character.

9. Command substitution

It is often useful to build an argument list from the output of a command. Rc
allows a command, enclosed in braces and preceded by a left quote, ‘{. ..}, any-
where that an argument is required. The command is executed and its standard
output captured. The characters stored in the variable ifs are used to split the
output into arguments. For example,

cat ‘{ls —-tr|sed 10q}

will concatenate the ten oldest files in the current directory in temporal order, given
the default i fs setting of space, tab, and newline.

10. Pipeline branching

The normal pipeline notation is general enough for almost all cases. Very
occasionally it is useful to have pipelines that are not linear. Pipeline topologies
more general than trees can require arbitrarily large pipe buffers, or worse, can
cause deadlock. Rc has syntax for some kinds of non-linear but treelike pipelines.
For example,

cmp <{old} <{new}

will regression-test a new version of a command. < or > followed by a command in
braces causes the command to be run with its standard output or input attached to
a pipe. The parent command (cmp in the example) is started with the other end of
the pipe attached to some file descriptor or other, and with an argument that will
connect to the pipe when opened (e.g., /dev/fd/6). Some commands are unpre-
pared to deal with input files that turn out not to be seekable. For example diff
needs to read its input twice.

11. Exit status

When a command exits it returns status to the program that executed it. On
Plan 9 status is a character string describing an error condition. On normal termina-
tion it is empty.

Rc captures command exit status in the variable $status. For a simple com-
mand the value of $status is just as described above. For a pipeline $status is
set to the concatenation of the statuses of the pipeline components with | charac-
ters for separators.

-5-

Rc has a several kinds of control flow, many of them conditioned by the status
returned from previously executed commands. Any $status containing only O’s
and |’s has boolean value true. Any other status is false.

12. Command grouping

A sequence of commands enclosed in {} may be used anywhere a command is
required. For example:

{sleep 3600;echo 'Time’’s up!’}&
will wait an hour in the background, then print a message. Without the braces,
sleep 3600;echo 'Time’’s up!’&

would lock up the terminal for an hour, then print the message in the background.

13. Control flow — for

A command may be executed once for each member of a list by typing, for
example:

for(i in printf scanf putchar) look $i /usr/td/lib/dw.dat

This looks for each of the words printf, scanf and putchar in the given file.
The general form is

for(name in list) command
or
for (name) command

In the first case command is executed once for each member of Jist with that mem-
ber assigned to variable name. If the clause “in list” is missing, “in $*” is
assumed.

14. Conditional execution — if
Rc also provides a general if-statement. For example:
for(i in *.c) if(cpp $i >/tmp/$i) vc /tmp/$i

runs the C compiler on each C source program that cpp processes without error. An
‘if not’ statement provides a two-tailed conditional. For example:

for(i){
if(test —f /tmp/$i) echo $i already in /tmp
if not cp $i /tmp
}
This loops over each file in $*, copying to /tmp those that do not already appear
there, and printing a message for those that do.

15. Control flow —while
Rc’s while statement looks like this:

while(newer subr.v subr.c) sleep 5

This waits until subr.v is newer than subr.c, presumably because the C com-
piler finished with it.

If the controlling command is empty, the loop will not terminate. Thus,
while() echo y

emulates the yes command.

16. Control flow — switch

Rc provides a switch statement to do pattern-matching on arbitrary strings. Its
general form is

switch(word){
case pattern ...
commands
case pattern ...
commands

Rc attempts to match the word against the patterns in each case statement in turn.
Patterns are the same as for filename matching, except that / and . and .. need
not be matched explicitly.

If any pattern matches, the commands following that case up to the next case
(or the end of the switch) are executed, and execution of the switch is complete.
For example,

switch($#*){
case 1

cat >>$1
case 2

cat >>$2 <§$1
case *
echo ’'Usage: append [from] to’

3

is an append command. Called with one file argument, it appends its standard
input to the named file. With two, the first is appended to the second. Any other
number elicits an error message.

The built-in ~ command also matches patterns, and is often more concise than
a switch. Its arguments are a string and a list of patterns. It sets $status to true
if and only if any of the patterns matches the string. The following example pro-
cesses option arguments for the man(1) command:

opt=()
while(~ $1 —-* [1-9] 10){
switch($1){

case [1-9] 10
sec=$1 secn=$1
case —-f
c=f s=f
case —-[qwnt]
cmd=$1
case -—-T*
T=$1
case —*
opt=($opt $1)
}
shift

17. Functions
Functions may be defined by typing

fn name { commands }

Subsequently, whenever a command named name is encountered, the remainder of

-7 -

the command’s argument list will assigned to $* and rc will execute the commandes.
The value of $* will be restored on completion. For example:

fn g {
grep $1 *.[hcyl]
+

defines g pattern to look for occurrences of pattern in all program source files in
the current directory.

Function definitions are deleted by writing

fn name

with no function body.

18. Command execution

Rc does one of several things to execute a simple command. If the command
name is the name of a function defined using fn, the function is executed. Other-
wise, if it is the name of a built-in command, the built-in is executed directly by rc.
Otherwise, directories mentioned in the variable $path are searched until an exe-
cutable file is found. Extensive use of the $path variable is discouraged in Plan 9.
Instead, use the default (. /bin) and bind what you need into /bin.

19. Built-in commands

Several commands are executed internally by rc because they are difficult to
implement otherwise.
[-i] file...
Execute commands from file. $* is set for the duration to the reminder of the
argument list following file. $path is used to search for file. Option —1i indicates
interactive input — a prompt (found in $prompt) is printed before each command
is read.

builtin command ...

Execute command as usual except that any function named command is ignored.
For example,

fn cd{

builtin cd $* && pwd
}

defines a replacement for the cd built-in (see below) that announces the full name of
the new directory.

cd [dir]

Change the current directory to dir. The default argument is $home. $cdpath is
a list of places in which to search for dir.

eval [arg...]

The arguments are concatenated (separated by spaces) into a string, read as input
to rc, and executed. For example,

x="8y’
y=Doody
eval echo Howdy, $x

would echo

Howdy, Doody

since the arguments of eval would be

echo Howdy, Sy

after substituting for $x.

exec [command...]
Rc replaces itself with the given command. This is like a goto — rc does not wait
for the command to exit, and does not return to read any more commands.

exit [status]
Rc exits immediately with the given status. If none is given, the current value of
$status is used.

flag f [+-1]
This command manipulates and tests the command line flags (described below).

flag f +
sets flag f.

flag f -

clears flag f.
flag f

tests flag f, setting $status appropriately. Thus
if(flag x) flag v +

sets the —v flag if the —x flag is already set.

rfork [nNeEsfF]
This uses the Plan 9 rfork system entry to put rc into a new process group with the
following attributes:

[(Flag Name Function 0
RFNAMEG Make a copy of the parent’s name space B
RFCNAMEG Start with a new, empty name space 0

e RFENVG Make a copy of the parent’s environment 0

(E RFCENVG Start with a new, empty environment ad

Us RFNOTEG Make a new note group g

% RFFDG Make a copy of the parent’s file descriptor space B
RFCFDG Make a new, empty file descriptor space 0

Section fork(2) of the Programmer’s Manual describes these attributes in more
detail.

shift [n]
Delete the first n (default 1) elements of §*.

wait [pid]
Wait for the process with the given pid to exit. If no pid is given, all outstanding
processes are waited for.

whatis name ...
Print the value of each name in a form suitable for input to rc. The output is an
assignment to a variable, the definition of a function, a call to builtin for a
built-in command, or the path name of a binary program. For example,

whatis path g cd who
might print

path=(. /bin)

fn g {gre -e $1 *.[hycl]}
builtin cd

/bin/who

~ Subject pattern ...
The subject is matched against each pattern in turn. On a match, $status is set
to true. Otherwise, it is set to ’'no match’. Patterns are the same as for file-
name matching. The patterns are not subjected to filename replacement before
the ~ command is executed, so they need not be enclosed in quotation marks,
unless of course, a literal match for * [or ? is required. For example

~ $1 7
matches any single character, whereas
~ $1 ki ? ’

only matches a literal question mark.

20. Advanced I/0 Redirection

Rc allows redirection of file descriptors other than 0 and 1 (standard input and
output) by specifying the file descriptor in square brackets [] after the < or >.
For example,

vc junk.c >[2]junk.diag
saves the compiler’s diagnostics from standard error in junk.diag.

File descriptors may be replaced by a copy, in the sense of dup(2), of an
already-open file by typing, for example

vc Jjunk.c >[2=1]

This replaces file descriptor 2 with a copy of file descriptor 1. It is more useful in
conjunction with other redirections, like this
vc junk.c >junk.out >[2=1]

Redirections are evaluated from left to right, so this redirects file descriptor 1 to
junk . out, then points file descriptor 2 at the same file. By contrast,

vc junk.c >[2=1] >junk.out
redirects file descriptor 2 to a copy of file descriptor 1 (presumably the terminal),
and then directs file descriptor 1 to a file. In the first case, standard and diagnostic

output will be intermixed in junk.out. In the second, diagnostic output will
appear on the terminal, and standard output will be sent to the file.

File descriptors may be closed by using the duplication notation with an empty
right-hand side. For example,

vc junk.c >[2=]

will discard diagnostics from the compilation.
Arbitrary file descriptors may be sent through a pipe by typing, for example,
vc junk.c |[[2] grep —-v ’A$’

This deletes blank lines from the C compiler’s error output. Note that the output of
grep still appears on file descriptor 1.

Occasionally you may wish to connect the input side of a pipe to some file
descriptor other than zero. The notation

-10 -

cmdl | [5=19] cmd?

creates a pipeline with cmd1’s file descriptor 5 connected through a pipe to cmd?2’s
file descriptor 19.

21. Here documents

Rc procedures may include data, called ‘““here documents’’, to be provided as
input to commands, as in this version of the te/l command

for(i) grep $i <<!

tor 2T-402 2912
kevin 2C-514 2842
bill 2C-562 7214

A here document is introduced by the redirection symbol <<, followed by an arbi-
trary EOF marker (! in the example). Lines following the command, up to a line
containing only the EOF marker are saved in a temporary file that is connected to
the command’s standard input when it is run.

Rc does variable substitution in here documents. The following command:

ed $3 <<EOF
g/$1/s//%$2/g
w

EOF

changes all occurrences of $1 to $2 in file $3. To include a literal $ in a here docu-
ment, type 3. If the name of a variable is followed immediately by A, the caret is
deleted.

Variable substitution can be entirely suppressed by enclosing the EOF marker
following << in quotation marks, as in <<’ EOF’.

Here documents may be provided on file descriptors other than 0 by typing,
for example,

cmd <<[4]End
End
If a here document appears within a compound block, the contents of the doc-
ument must be after the whole block:

for(i in $*){
mail $i <<EOF
}

words to live by
EOF

22. Catching Notes

Rc scripts normally terminate when an interrupt is received from the terminal.
A function with the name of a UNIX signal, in lower case, is defined in the usual way,
but called when rc receives the corresponding note. The notify(2) section of the
Programmer’s Manual discusses notes in some detail. Notes of interest are:
sighup
The note was ‘hangup’. Plan 9 sends this when the terminal has disconnected
from rc.

11 -

sigint
The note was ‘interrupt’, usually sent when the interrupt character (ASCIl DEL) is
typed on the terminal.

sigterm
The note was ‘kill’, normally sent by kill(1).
sigexit
An artificial note sent when rc is about to exit.
As an example,

fn sigint{
rm /tmp/junk
exit

}

sets a trap for the keyboard interrupt that removes a temporary file before exiting.

Notes will be ignored if the note routine is set to {}. Signals revert to their
default behavior when their handlers’ definitions are deleted.

23. Environment

The environment is a list of name-value pairs made available to executing
binaries. On Plan 9, the environment is stored in a file system named #e, normally
mounted on /env. The value of each variable is stored in a separate file, with com-
ponents terminated by zero bytes. (The file system is maintained entirely in core,
so no disk or network access is involved.) The contents of /env are shared on a
per-process group basis — when a new process group is created it effectively
attaches /env to a new file system initialized with a copy of the old one. A conse-
qguence of this organization is that commands can change environment entries and
see the changes reflected in rc.

Functions also appear in the environment, named by prefixing fn# to their
names, like /env/fn#roff.

24. Local Variables

It is often useful to set a variable for the duration of a single command. An
assignment followed by a command has this effect. For example

a=global
a=local echo $a
echo $a

will print

local
global

This works even for compound commands, like

f=/fairly/long/file/name {
{ wc $f; spell $f; diff $f.o0l1d $f 3} |
pr -h ’'Facts about ’$f | 1p —-dfn

25. Examples — cd, pwd

Here is a pair of functions that provide enhanced versions of the standard cd
and pwd commands. (Thanks to Rob Pike for these.)

-12 -

psl="% "’ # default prompt
tab=’ ! # a tab character
fn cd{

builtin cd $1 &&
switch($#*){
case O
dir=%$home
prompt=($psl $tab)
case *
switch($1)
case /*
dir=$%$1
prompt=(‘{basename ‘{pwd}}A$psl $tab)
case */* ,.*
dir=_)
prompt=(‘{basename ‘{pwd}}A$psl $tab)
case *
dir=()
prompt=($1A$psl $tab)
}
}
¥
fn pwd{
if(~ $#dir 0)
dir=‘{/bin/pwd}
echo $dir

3

Function pwd is a version of the standard pwd that caches its value in variable
$dir, because the genuine pwd can be quite slow to execute. (Recent versions of
Plan 9 have very fast implementations of pwd, reducing the advantage of the pwd
function.)

Function cd calls the cd built-in, and checks that it was successful. If so, it
sets $dir and $prompt. The prompt will include the last component of the cur-
rent directory (except in the home directory, where it will be null), and $dir will be
reset either to the correct value or to (), so that the pwd function will work cor-
rectly.

26. Examples — man

The man command prints pages of the Programmer’s Manual. It is called, for
example, as

man 2 sinh
man rc
man -t cat

In the first case, the page for sinh in section 2 is printed. In the second case, the
manual page for rc is printed. Since no manual section is specified, all sections are
searched for the page, and it is found in section 1. In the third case, the page for
cat is typeset (the —t option).

-13 -

cd /sys/man || {
echo $0: No manual! >[1=2]
exit 1

¥

NT=n # default nroff
s="*"' # section, default try all
for(i) switch($i){
case -t
NT=t
case -n
NT=n
case —*%
echo Usage: $0 '[-nt] [section] page ...’ >[1=2]
exit 1
case [1-9] 10
s=$i
case
eval ’'pages=’$s/$i
for(page in $pages){
if(test —f $page)
$NTAroff —-man $page
if not
echo $0: $i not found >[1=2]

}
}
Note the use of eval to make a list of candidate manual pages. Without eval, the
* stored in $s would not trigger filename matching — it’s enclosed in quotation

marks, and even if it weren’t, it would be expanded when assigned to $s. Eval
causes its arguments to be re-processed by rc’'s parser and interpreter, effectively
delaying evaluation of the * until the assignment to $pages.

27. Examples — holmdel

The following rc script plays the deceptively simple game holmdel, in which the
players alternately name Bell Labs locations, the winner being the first to mention
Holmdel.

This script is worth describing in detail (rather, it would be if it weren’t so
silly.)

Variable $t is an abbreviation for the name of a temporary file. Including
$pid, initialized by rc to its process-id, in the names of temporary files insures
that their names won’t collide, in case more than one instance of the script is run-
ning at a time.

Function read’s argument is the name of a variable into which a line gathered
from standard input is read. $ifs is set to just a newline. Thus read’s input is
not split apart at spaces, but the terminating newline is deleted.

A handler is set to catch sigint, sigquit, and sighup, and the artificial
sigexit signal. It just removes the temporary file and exits.

The temporary file is initialized from a here document containing a list of Bell
Labs locations, and the main loop starts.

First, the program guesses a location (in $1ab) using the fortune program
to pick a random line from the location list. It prints the location, and if it guessed
Holmdel, prints a message and exits.

Then it uses the read function to get lines from standard input and validity-
check them until it gets a legal name. Note that the condition part of a while can
be a compound command. Only the exit status of the last command in the

-14 -

t=/tmp/holmdel$pid
fn read{

$1=‘{awk ’'{print;exit}’}
}

ifs=’
’ # just a newline
fn sigexit sigint sigquit sighup{
rm —-f $t
exit
¥
cat <<’!’ >$%t
Allentown
Atlanta
Cedar Crest
Chester
Columbus
Elmhurst
Fullerton
Holmdel
Indian Hill
Merrimack Valley
Morristown
Neptune
Piscataway
Reading
Short Hills
South Plainfield
Summit
Whippany
West Long Branch
|
while(){
lab=‘{fortune $t}
echo $1lab
if(~ $lab Holmdel){
echo You lose.
exit
}
while(read lab; ! grep —-i —-s $lab $t) echo No such location.
if(~ $1lab [hH]olmdel){
echo You win.
exit

3

sequence is checked.

Again, if the result is Holmdel, it prints a message and exits. Otherwise it goes
back to the top of the loop.

28. Design Principles

Rc draws heavily from Steve Bourne’s /bin/sh. Any successor of the Bourne
shell is bound to suffer in comparison. | have tried to fix its best-acknowledged
shortcomings and to simplify things wherever possible, usually by omitting inessen-
tial features. Only when irresistibly tempted have | introduced novel ideas. Obvi-
ously | have tinkered extensively with Bourne’s syntax.

The most important principle in rc’s design is that it’s not a macro processor.
Input is never scanned more than once by the lexical and syntactic analysis code

-15 -

(except, of course, by the eval command, whose raison d’étre is to break the rule).

Bourne shell scripts can often be made to run wild by passing them arguments
containing spaces. These will be split into multiple arguments using IFS, often at
inopportune times. In rc, values of variables, including command line arguments,
are not re-read when substituted into a command. Arguments have presumably
been scanned in the parent process, and ought not to be re-read.

Why does Bourne re-scan commands after variable substitution? He needs to
be able to store lists of arguments in variables whose values are character strings.
If we eliminate re-scanning, we must change the type of variables, so that they can
explicitly carry lists of strings.

This introduces some conceptual complications. We need a notation for lists of
words. There are two different kinds of concatenation, for strings — aAb, and
lists — ($a $b). The difference between () and ’’ is confusing to novices,
although the distinction is arguably sensible — a null argument is not the same as
no argument.

Bourne also rescans input when doing command substitution. This is because
the text enclosed in back-quotes is not a string, but a command. Properly, it ought
to be parsed when the enclosing command is, but this makes it difficult to handle
nested command substitutions, like this:

size=‘wc -1 \‘ls —-t|sed 1g\‘"

The inner back-quotes must be escaped to avoid terminating the outer command.
This can get much worse than the above example; the number of \’s required is
exponential in the nesting depth. Rc fixes this by making the backquote a unary
operator whose argument is a command, like this:

size=‘{wc -1 ‘{ls —-t|sed 1q}}
No escapes are ever required, and the whole thing is parsed in one pass.

For similar reasons rc defines signal handlers as though they were functions,
instead of associating a string with each signal, as Bourne does, with the attendant
possibility of getting a syntax error message in response to typing the interrupt
character. Since rc parses input when typed, it reports errors when you make them.

For all this trouble, we gain substantial semantic simplifications. There is no
need for the distinction between $* and $@. There is no need for four types of
guotation, nor the extremely complicated rules that govern them. In rc you use
quotation marks when you want a syntax character to appear in an argument, or an
argument that is the empty string, and at no other time. IFS is no longer used,
except in the one case where it was indispensable: converting command output into
argument lists during command substitution.

This also avoids an important UNIX security hole. In UNIX, the system and
popen functions call /bin/sh to execute a command. It is impossible to use
either of these routines with any assurance that the specified command will be exe-
cuted, even if the caller of system or popen specifies a full path name for the com-
mand. This can be devastating if it occurs in a set-userid program. The problem is
that IFS is used to split the command into words, so an attacker can just set
IFS=/ in his environment and leave a Trojan horse named usr or bin in the cur-
rent working directory before running the privileged program. Rc fixes this by never
rescanning input for any reason.

Most of the other differences between rc and the Bourne shell are not so seri-
ous. | eliminated Bourne’s peculiar forms of variable substitution, like

echo ${a=b} ${c-d} ${e?error}

-16 -

because they are little used, redundant and easily expressed in less abstruse terms.
| deleted the builtins export, readonly, break, continue, read, return,
set, times and unset because they seem redundant or only marginally useful.

Where Bourne’s syntax draws from Algol 68, rc’s is based on C or Awk. This is
harder to defend. | believe that, for example

if(test —f junk) rm junk
is better syntax than
if test —f junk; then rm junk; fi

because it is less cluttered with keywords, it avoids the semicolons that Bourne
requires in odd places, and the syntax characters better set off the active parts of
the command.

The one bit of large-scale syntax that Bourne unquestionably does better than
rc is the if statement with else clause. Rc’s if has no terminating fi-like
bracket. As a result, the parser cannot tell whether or not to expect an else clause
without looking ahead in its input. The problem is that after reading, for example

if(test —f junk) echo junk found

in interactive mode, rc cannot decide whether to execute it immediately and print
$prompt (1), or to print $prompt (2) and wait for the else to be typed. In the
Bourne shell, this is not a problem, because the if command must end with fi,
regardless of whether it contains an else or not.

Rc’s admittedly feeble solution is to declare that the el se clause is a separate
statement, with the semantic proviso that it must immediately follow an if, and to
call it if not rather than else, as a reminder that something odd is going on.
The only noticeable consequence of this is that the braces are required in the con-
struction

for(i){
if(test —f $i) echo $i found
if not echo $i not found

}

and that rc resolves the ‘‘dangling else’” ambiguity in opposition to most people’s
expectations.

It is remarkable that in the four most recent editions of the UNIX system
programmer’s manual the Bourne shell grammar described in the manual page does
not admit the command who | wc. This is surely an oversight, but it suggests some-
thing darker: nobody really knows what the Bourne shell’s grammar is. Even exami-
nation of the source code is little help. The parser is implemented by recursive
descent, but the routines corresponding to the syntactic categories all have a flag
argument that subtly changes their operation depending on the context. Rc’s parser
is implemented using yacc, so | can say precisely what the grammar is.

29. Acknowledgements

Rob Pike, Howard Trickey and other Plan 9 users have been insistent, incessant
sources of good ideas and criticism. Some examples in this document are plagia-
rized from [Bourne], as are most of rc’s good features.

30. Reference

S. R. Bourne, UNIX Time-Sharing System: The UNIX Shell, Bell System Technical Jour-
nal, Volume 57 number 6, July-August 1978

